
SPEECH SYNTHESIS AND CONTROL USING DIFFERENTIABLE DSP

Giorgio Fabbro 1,2 Vladimir Golkov 2 Thomas Kemp 1 Daniel Cremers 2

1 Sony Europe B.V., Stuttgart 2 Computer Vision Group, Technical University of Munich

ABSTRACT

Modern text-to-speech systems are able to produce natural and high-
quality speech, but speech contains factors of variation (e.g. pitch,
rhythm, loudness, timbre) that text alone cannot contain. In this
work we move towards a speech synthesis system that can produce
diverse speech renditions of a text by allowing (but not requiring)
explicit control over the various factors of variation. We propose
a new neural vocoder that offers control of such factors of varia-
tion. This is achieved by employing differentiable digital signal pro-
cessing (DDSP) (previously used only for music rather than speech),
which exposes these factors of variation. The results show that the
proposed approach can produce natural speech with realistic timbre,
and individual factors of variation can be freely controlled.

Index Terms— Neural vocoder, speech synthesis, digital signal
processing, neural networks, deep learning

1. INTRODUCTION

A sentence can be pronounced in many different ways: fast or slow,
happy or angry, with emphasis on certain words. We can say much
more than what is written because we are able to control some fun-
damental aspects of the production of speech. In this work, we call
these aspects factors of variation, since their variation affects the
overall meaning of speech. These factors of variation include pitch,
rhythm, loudness, and timbre. In this work, we move towards a
speech synthesis system that can produce diverse speech renditions
of a text by allowing explicit control over the various factors of vari-
ation.

In literature, control is achieved in different ways. Here we make
an important distinction between models that require control and
models that offer optional control. Models that require control ex-
pect additional inputs to generate speech, whereas models that offer
optional control disentagle the data into various components and pro-
vide the possibility to modify them. Optional control is preferable,
as not always affecting the generation is desired and not always we
possess all the required inputs.

Digital signal processing (DSP) algorithms are central methods
in audio engineering. Recently, differentiable DSP (DDSP) [1] has
been introduced as a new method to generate audio with deep learn-
ing: DSP algorithms are used as parts of a neural network, ensur-
ing end-to-end optimization. DDSP so far has only been applied to
music. We use DDSP to generate speech. Since DDSP generators
directly map the controllable variables to audio, we propose con-
trol where the audio is generated (i.e. in the neural vocoder), and
not earlier in the pipeline as others do. This choice has several ad-
vantanges: it can be used not only with a spectrogram generator in
text-to-speech (TTS), but also to modify properties of existing au-
dio clips. Moreover, our neural vocoder provides direct control to
any spectrogram generator, without the effort and the difficulty of
redesigning the latter to offer control. This work is intended as a

first step towards DDSP-based speech synthesis systems for a wide
range of applications that are able to let the user affect aspects of
speech that text alone cannot encode.

2. RELATED WORK

The goal of TTS is to convert a text sequence into an audio rendition
of someone’s voice pronouncing that text. The typical TTS system
employs two steps to achieve that goal. First, a model converts the
text into an acoustic representation of speech, usually a mel spectro-
gram. We call such a model a (mel) spectrogram generator. Then,
another model converts the mel spectrogram into the audio wave-
form. This model is usually referred to as a (neural) vocoder. In
existing methods, control of factors of variation happens during the
mel spectrogram generation. Our method, on the other hand, offers
control in the neural vocoder. In the following we first outline some
models that generate mel spectrograms while offering control. Then
we outline the major neural vocoders in literature.

Various approaches have been proposed to affect the mel spec-
trogram generation from text. Those that require control use addi-
tional inputs to the networks as in Fig. 1a [4, 5, 2, 6, 7]. Those that
offer control (but do not require it) aim at controlling latent variables
while ensuring that they are interpretable [8, 9, 10, 11], or disen-
tangle one interpretable control variable (often the duration of the
utterance) and make it controllable as in Fig. 1b [3, 12, 13].

Mellotron

Text

Pitch contour

Speaker identity

Global style token

Rhythm

Mel
spectrogram

(a) Mellotron

Phoneme-side
network

Duration
predictor

Length
regulation

Spectrogram-side
network

Mel
spectrogram

Phoneme
durations
(rhythm)

Phoneme
embeddingsText

(b) FastSpeech

Fig. 1: Comparison of two existing models that use factors of vari-
ation such as rhythm to affect the audio generation. Red blocks are
learned models, yellow blocks are fixed operations. (a) Mellotron [2]
does not infer the factors of variation, it always requires them as in-
put. (b) FastSpeech [3] infers phoneme durations (i.e. rhythm) and
offers (but does not require) their control. Offering control without
requiring it makes a model applicable in a wider variety of settings.

ar
X

iv
:2

01
0.

15
08

4v
1

 [
ee

ss
.A

S]
 2

8
O

ct
 2

02
0

Neural
network

ConvNet

ConvNet

Concat ConcatGRU

Harmonic
sinusoidal
oscillator

Filtered-
noise

generator

+

Pitch
contour

Amplitude
envelope

Filter
coefficients

Harmonic
distribution

Mel spectrogram Waveform

ConvNet

Fig. 2: The proposed DDSP-based neural vocoder. The neural network decomposes the spectrogram into control variables (amplitude
envelope, harmonic distribution, and filter coefficients) for the DSP generators: this allows us to control them, if needed. We use the ground-
truth pitch contour during training instead of letting the neural network infer it, in order to study in isolation the network’s capabilities of
modeling the other three control variables. The oscillator produces vowels, the noise generator produces consonants.

Existing neural vocoders use various principles such as autore-
gressive networks [14], flows [15, 16, 17, 18, 19], adversarial learn-
ing [20, 21, 22, 23], and source-filtering [24]. These principles do
not expose the factors of variation as interpretable variables and thus
do not allow their control. We propose using a different principle
to generate speech, namely DDSP [1], that so far was used only for
music synthesis.

3. METHODS

Our objective is to have a model that offers (but does not require)
control of factors of variation, so that we can modify them if needed.
A simple way of achieving this is to include in the model architec-
ture a fixed (i.e. not learned) operation that requires such variable
(and make sure that no other operation will further perturb its out-
come). For instance, the length regulation algorithm in Figure 1b
requires phonemes duration as input: in this way, the authors can
disentangle the speech rhythm from the data and make it available
to the user for control. Another approach is to use DSP algorithms
such as oscillators, since they generate audio signals using variables
that we would like to control. Following [1], we insert differentiable
DSP algorithms to synthesize audio (in our case speech): our model
architecture has then fixed operations that use our controllable vari-
ables.

3.1. Network Architecture

Our neural vocoder is depicted in Figure 2. The model takes as in-
put the mel spectrogram of a sentence and uses a recurrent neural
network to decompose it into a set of control variables. These vari-
ables are input to a harmonic oscillator and a filtered-noise genera-
tor. These two final blocks output two audio sequences, which get
summed to produce the final speech signal. The oscillator and the
noise generator are differentiable (as in [1]), therefore we can apply
a loss to the output signal and expect the gradients to flow back to the
weights of the neural network. Note that the usage of an oscillator to

model the voiced parts of speech (vowels) and a filtered-noise gener-
ator to model consonant sounds makes our model similar to spectral
modeling synthesis [25] and to neural source-filter models [24].

3.1.1. Trainable Layers

For simplicity, we use the same network architecture as the decoder
in DDSP [1]. The decoder first applies to each of its inputs a 1D
ConvNet with layer normalization, leaky ReLUs, and filter size 1
(equivalent to applying a multilayer perceptron to each time frame),
then concatenates the outputs of the ConvNets over the channels di-
mension and feeds them to a gated recurrent unit (GRU) that pro-
cesses them over the time dimension. The output of the GRU is
concatenated with its input and fed to another ConvNet. Its output
is then split over the channels dimension to create the desired con-
trol variables. Our network is different from the DDSP decoder [1]
only in the input stage: their inputs are intermediate variables (pitch,
loudness, and a latent variable) each processed by a separate Conv-
Net, whereas our input is only the mel spectrogram. Therefore, we
reduced the number of parallel ConvNets in the input stage. Still,
in [1] the authors could have used a single ConvNet and feed it with
the three inputs concatenated along the channels dimension, but they
used three separate ConvNets in parallel. This indicates that the net-
work performs better if it processes different information (for ex-
ample pitch and loudness) in separate ConvNets (without cross-talk)
before merging the extracted features. Similarly, we use two Conv-
Nets in parallel. In this way the network can learn to extract and pro-
cess different parts of information from the spectrogram separately
before merging high-level features. Hyperparameters are listed in
Section 3.2.

In order to make the optimization easier in the first experiments
and to focus on learning to infer a specific subset of control variables,
we provide to the harmonic oscillator the pitch contour extracted
from the original audio, so that the efforts of the neural network are
focused on loudness, timbre, and rhythm. This does not affect the
capabilities of the neural vocoder in controlling pitch.

We let the network work at an intermediate temporal resolution

that is higher than in the mel spectrogram but lower than in the au-
dio. To this end, the mel spectrogram is upsampled by a factor of 8.5
using bilinear interpolation before going into the network. Lower
upsampling factors yielded lower audio quality, whereas higher ones
yielded similar quality but slower computation. The network output
is further upsampled using bilinear interpolation to reach the tempo-
ral resolution of the audio.

3.1.2. Harmonic Sinusoidal Oscillator

The time-upsampled outputs of the neural network are used to con-
trol two DSP generators: a harmonic sinusoidal oscillator and a
filtered-noise generator. The harmonic sinusoidal oscillator is con-
trolled by the fundamental frequency (pitch contour) f1(n) ∈ R+

for each time instant n, an amplitude envelope A(n) ∈ R+ for each
n, and a distribution ck(n) over harmonics that for each time step
contains the weight to be applied to each harmonic (the weights sum
up to 1 for every time step). The distribution ck characterizes the
timbre and the vowel. Following [1], the amplitude for each har-
monic is Ak(n) = A(n)ck(n).

The oscillator generates a superposition y(n) of harmonically
related sinusoidal signals, i.e. signals whose frequency fk(n) is an
integer multiple of the fundamental frequency f1(n) , i.e. fk(n) =
kf1(n) with k ∈ Z+. Since digital signals are bandlimited, we only
consider a finite number H of harmonics, i.e. 1 < k < H . The
output of the oscillator is:

y(n) =

H∑
k=1

Ak(n) sin(φk(n)), (1)

where φk(n) = 2π
∑n

i=0 fk(i) is the so-called instantaneous phase
for time instant n and harmonic k. The only hyperparameter that
must be chosen for the harmonic oscillator is the number H of har-
monics it generates. The dataset we used was recorded at a sampling
frequency fs = 22 050Hz, so the Nyquist frequency is fNyq =
fs/2 = 11 025Hz. A generic female speech signal has a fundamen-
tal frequency with lower bound f (min)

1 = 165Hz [26] (we model fe-
male voice because our dataset contains only female speech). There-
fore, in order to effectively model all harmonic content that our sig-
nal potentially has, we need H = fNyq/f

(min)
1 ≈ 67 harmonics.

3.1.3. Filtered-Noise Generator

To add non-harmonic components (consonants) to our synthesis pro-
cess, we use a module that generates white noise and filters it with
a linear time-varying filter bank [1]. We control this filtered-noise
generator by letting the neural network output parameters for the
time-varying filter bank. For speed, the filtering operation occurs
in the frequency domain: the time-upsampled outputs of the neu-
ral network are elementwise multiplied with white noise in the fre-
quency domain. The signal is then converted to time-domain using
the overlap–add method to account for the overlap between adjacent
time frames. We can choose the frequency resolution of the filter by
changing the number M of frequency-domain coefficients (network
output channels). By increasing M , we decrease the amount of fre-
quencies that each coefficient corresponds to, therefore increasing
the filter resolution. We found that M = 101 gave us good results,
while keeping the computational load low.

3.1.4. Training Objective

Our loss is computed using spectrograms with different time resolu-
tions, similarly to the multi-scale spectrogram loss from DDSP [1].

Since we propose to adapt DDSP to speech, we define the loss via
mel spectrograms, which are widely used for speech applications,
instead of short-time Fourier transforms (STFT). A mel spectrogram
is computed by mapping the result of STFT to the mel scale. This
implies that in our case the frequency resolution will remain always
constant for STFT results computed with different time-frequency
resolutions, as we map all of them to the same mel scale. Therefore,
our loss is

L =
∑
i∈R

∥∥∥Smel
i − Ŝmel

i

∥∥∥
1
+ α

∥∥∥logSmel
i − log Ŝmel

i

∥∥∥
1
, (2)

where R = {2048, 1024, 512, 256, 128, 64} is the set of time-
frequency resolutions measured in the number of samples, Smel

is the mel spectrogram of the ground-truth audio and Ŝmel is the
mel spectrogram of the generated audio. In all the experiments, we
used mel spectrograms with 80 frequency bins. The time overlap
of the audio data between neighbouring frames in each spectrogram
is 75%.

3.2. Experimental Setup

We trained on the LJSpeech dataset [27], which contains 13100 short
audio clips of one female speaker reading non-fictional passages.
The clips vary in length between 1 and 10 seconds and have an aver-
age length of 6.5 seconds. The total length of the dataset is approx-
imately 24 hours. The audio sampling frequency is fs = 22 050Hz
and the encoding is 16-bit PCM WAV. No pre-processing was ap-
plied to the original audio and the input mel spectrograms were ob-
tained from the ground truth audio by applying the STFT where each
frame is the result of an FFT applied to 1024 samples of audio; each
frame overlaps with the previous one and the next one by 75%. They
have 80 frequency bins that cover the interval [0Hz; 8000Hz]. We
provided our model with ground truth pitch contours extracted with
the YIN algorithm [28] using the same parameters as for the mel
spectrograms. We used the first 12822 clips as the training set, and
the remaining 278 clips (i.e. the files named LJ050-*.wav) as the
test set. For validation, we randomly selected a portion of the train-
ing set. As baselines, we used the official implementation of Wave-
Glow [16] and our implementation of WaveNet [14] in NNabla1.

We used the Adam optimizer [29] with learning rate 10−4, β1 =
0.9 and β2 = 0.999. We applied an exponential learning rate decay
of 0.98 every 104 iterations. We stopped training after 4 · 105 itera-
tions as we could not notice any more improvement.

Our best configuration uses the following hyperparameters:
batch size 8, batch length 6 · 104 samples, and M = 101. The GRU
layer in the architecture has 512 units. Each ConvNet has 3 layers
with filter size 1 and 512 filters in the hidden layers. We also tried
a smaller architecture (1 layer in each ConvNet with 256 filters in
hidden layers), but results were worse.

4. RESULTS AND DISCUSSION

4.1. Audio Clips

Typical clips generated by our neural vocoder are available on the
project’s GitHub page2. Our speech is fully intelligible and we
model accurately the speaker’s timbre. Some consonants still sound
slightly artificial and some slight noise from the noise generator can
be heard even when vowels are pronounced.

1www.github.com/sony/nnabla
2https://thesmith1.github.io/DDSPeech/

https://thesmith1.github.io/DDSPeech/

50000 75000 100000125000150000175000200000
Length of generated audio [samples]

0.4

0.5

0.6

0.7

0.8

0.9

Sp
ee

d
[m

illi
on

s o
f s

am
pl
es

/s
]

Our model
WaveGlow

Fig. 3: Synthesis speed for WaveGlow (which is fast and high-
quality) and our model. Our model can synthesize audio at almost
40× real-time for long audio sequences.

On the same webpage, we also provide some clips to showcase
the control capabilities of our neural vocoder. In particular, we show
how we can freely change the pitch of the utterance, either by mod-
ification or by substitution. Moreover, in some cases we perceive
traces of the original pitch (e.g. in the clip where the pitch is modi-
fied to be constant). These traces appear to be encoded in the timbre.

4.2. Synthesis Speed

Figure 3 shows a comparison of the inference speed for WaveGlow
and our model, given different lengths of the audio to be synthesized.
We avoid the inclusion of WaveNet, since it is a sequential approach
and therefore very slow. The speed of WaveGlow is overall constant
with the output size, whereas our model generates more samples per
second the more samples the audio clip has, outperforming Wave-
Glow for clips longer than 2 seconds. We attribute this different
scaling behavior of the two models to the GPU using different op-
timizations for different architectures. To confirm this, we repeated
the measurement on the CPU (using a single core) and established
that the speed (in samples per second) of our model as a function of
clip length is constant on the CPU.

4.3. Training Time

Our DDSP-based neural vocoder converged in 2.5 days on one GPU.
This is relatively fast compared to other popular neural vocoders
such as WaveNet, which required 4–5 days, or WaveGlow, which
required 10 days and more than one GPU.

4.4. Model Size

Table 1 shows the sizes of various neural vocoders, expressed as the
number of learnable parameters. Our neural vocoder is relatively
small: without compression it needs less than 20MB of memory
space. Such a small size makes it possible to utilize our model on
edge devices. Unfortunately, the majority of such devices lacks the
presence of a GPU, therefore the inference speed for now would be
very low. On the other hand, once that issue is solved, our neural
vocoder will represent a viable solution also for embedded systems.

Model Size

WaveNet 6.8 million
WaveGlow 87.8 million
Our model 4.9 million

Table 1: Numbers of parameters of different neural vocoders. Our
model is much smaller than WaveGlow and is comparable to Wave-
Net. Moreover, our model offers control of interpretable factors of
variation of speech, such as pitch.

4.5. Listening Test

We performed a MUSHRA listening test [30, 31] with seven clips
from the test set, which offers statistical significance for small num-
bers of participants. To reject unreliable listeners who give high
scores to bad audio as per the MUSHRA protocol, we created bad
audio by randomly shifting in time each frequency band of ground-
truth audio by up to 5 spectrogram frames, adding the elementwise
product of the original signal with white noise, and low-pass filter-
ing. Of the 37 people who participated in our listening test, 8 were
filtered out because they either assigned a score below 90 to a hid-
den copy of the reference, or they assigned a score higher than 30
to the lower anchor. MUSHRA scores for our neural vocoder had a
median of 40 (out of 100), with a relatively high variance , because,
even though the speaker’s timbre is well modeled, not all conso-
nants sound realistic and it is easy to tell it apart from the real audio
clip. The Griffin–Lim algorithm [32] had similar scores to our neu-
ral vocoder, even though its outputs have different characteristics, as
consonants did not sound artificial but the speaker’s timbre is con-
taminated by the imperfect estimation of the phase. This indicates
that a few-dimensional quality score cannot reflect many dimensions
of audio quality, especially in the case of moderate scores. In other
words, moderate scores do not tell us which of the dimensions of
quality are worth improving. WaveNet and WaveGlow yield results
that are good along all dimensions of quality, and hence also received
a high one-dimensional score, namely a median MUSHRA score of
90 and 84, respectively.

5. CONCLUSIONS AND FUTURE WORK

This paper proposed using DDSP operators within neural vocoders.
This offers the possibility of controlling the pitch contour and other
factors of variation of an utterance. Even though the quality of the
synthesized speech can be improved, the control capabilities that
the model offers open up new research directions to study further
how speech is generated and new opportunities for many application
fields.

Future research directions include the usage of a different syn-
thesis operator to make the model faster on the CPU: one example
could be to use a wavetable oscillator instead of a harmonic one.
Moreover, taking into account the dependency between pitch and
timbre will improve synthesis quality. Finally, disentangling the fac-
tors of variation from the mel spectrogram enables the usage of other
statistical models together with our neural vocoder: such models
would operate on the factors of variation and could provide natural-
sounding variations to generate alternative versions of the same ut-
terance.

This work was supported by the Munich Center for Machine Learning
(Grant No. 01IS18036B) and the BMBF project MLwin.

References
[1] J. H. Engel, L. Hantrakul, C. Gu, and A. Roberts, “DDSP:

differentiable digital signal processing,” in 8th International
Conference on Learning Representations, ICLR. 2020, Open-
Review.net.

[2] R. Valle, J. Li, R. Prenger, and B. Catanzaro, “Mellotron:
Multispeaker expressive voice synthesis by conditioning on
rhythm, pitch and global style tokens,” in 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
ICASSP. 2020, pp. 6189–6193, IEEE.

[3] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T. Liu,
“FastSpeech: Fast, robust and controllable text to speech,”
in Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Sys-
tems, NeurIPS, H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp.
3165–3174.

[4] Y. Wang, D. Stanton, Y. Zhang, R. J. Skerry-Ryan, E. Bat-
tenberg, J. Shor, Y. Xiao, Y. Jia, F. Ren, and R. A. Saurous,
“Style tokens: Unsupervised style modeling, control and trans-
fer in end-to-end speech synthesis,” in Proceedings of the 35th
International Conference on Machine Learning, ICML. 2018,
vol. 80, pp. 5167–5176, PMLR.

[5] S. Shechtman, C. Rabinovitz, A. Sorin, Z. Kons, and R. Hoory,
“Controllable sequence-to-sequence neural TTS with LPC-
Net backend for real-time speech synthesis on CPU,” arXiv
preprint arXiv:2002.10708, 2020.

[6] J. Shen, Y. Jia, M. Chrzanowski, Y. Zhang, I. Elias, H. Zen, and
Y. Wu, “Non-attentive tacotron: Robust and controllable neu-
ral TTS synthesis including unsupervised duration modeling,”
CoRR, vol. abs/2010.04301, 2020.

[7] J. Bae, H. Bae, Y. Joo, J. Lee, G. Lee, and H. Cho, “Speaking
speed control of end-to-end speech synthesis using sentence-
level conditioning,” CoRR, vol. abs/2007.15281, 2020.

[8] T. Raitio, R. Rasipuram, and D. Castellani, “Controllable neu-
ral text-to-speech synthesis using intuitive prosodic features,”
CoRR, vol. abs/2009.06775, 2020.

[9] R. Valle, K. J. Shih, R. Prenger, and B. Catanzaro, “Flowtron:
an autoregressive flow-based generative network for text-to-
speech synthesis,” CoRR, vol. abs/2005.05957, 2020.

[10] W. Hsu, Y. Zhang, R. J. Weiss, H. Zen, Y. Wu, Y. Wang, Y. Cao,
Y. Jia, Z. Chen, J. Shen, P. Nguyen, and R. Pang, “Hierarchi-
cal generative modeling for controllable speech synthesis,” in
Proceedings of the 35th International Conference on Machine
Learning, ICML. 2019, OpenReview.net.

[11] R. Habib, S. Mariooryad, M. Shannon, E. Battenberg, R. J.
Skerry-Ryan, D. Stanton, D. Kao, and T. Bagby, “Semi-
supervised generative modeling for controllable speech syn-
thesis,” in 8th International Conference on Learning Repre-
sentations, ICLR. 2020, OpenReview.net.

[12] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and
T. Liu, “FastSpeech 2: Fast and high-quality end-to-end text to
speech,” CoRR, vol. abs/2006.04558, 2020.

[13] J. Kim, S. Kim, J. Kong, and S. Yoon, “Glow-TTS: A gener-
ative flow for text-to-speech via monotonic alignment search,”
CoRR, vol. abs/2005.11129, 2020.

[14] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and
K. Kavukcuoglu, “WaveNet: A generative model for raw au-
dio,” in The 9th ISCA Speech Synthesis Workshop. 2016, p.
125, ISCA.

[15] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan,
O. Vinyals, K. Kavukcuoglu, G. van den Driessche, E. Lock-
hart, L. C. Cobo, F. Stimberg, N. Casagrande, D. Grewe,
S. Noury, S. Dieleman, E. Elsen, N. Kalchbrenner, H. Zen,
A. Graves, H. King, T. Walters, D. Belov, and D. Hassabis,
“Parallel WaveNet: Fast high-fidelity speech synthesis,” in
Proceedings of the 35th International Conference on Machine
Learning, ICML. 2018, vol. 80, pp. 3915–3923, PMLR.

[16] R. Prenger, R. Valle, and B. Catanzaro, “WaveGlow: A flow-
based generative network for speech synthesis,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Process-
ing, ICASSP. 2019, pp. 3617–3621, IEEE.

[17] S. Kim, S. Lee, J. Song, J. Kim, and S. Yoon, “FloWaveNet
: A generative flow for raw audio,” in Proceedings of the
36th International Conference on Machine Learning, ICML,
K. Chaudhuri and R. Salakhutdinov, Eds. 2019, vol. 97 of
Proceedings of Machine Learning Research, pp. 3370–3378,
PMLR.

[18] B. Zhai, T. Gao, F. Xue, D. Rothchild, B. Wu, J. E. Gonza-
lez, and K. Keutzer, “SqueezeWave: Extremely lightweight
vocoders for on-device speech synthesis,” CoRR, vol.
abs/2001.05685, 2020.

[19] W. Ping, K. Peng, K. Zhao, and Z. Song, “WaveFlow:
A compact flow-based model for raw audio,” CoRR, vol.
abs/1912.01219, 2019.

[20] C. Donahue, J. J. McAuley, and M. S. Puckette, “Adversarial
audio synthesis,” in 7th International Conference on Learning
Representations, ICLR. 2019, OpenReview.net.

[21] M. Binkowski, J. Donahue, S. Dieleman, A. Clark, E. Elsen,
N. Casagrande, L. C. Cobo, and K. Simonyan, “High fidelity
speech synthesis with adversarial networks,” in 8th Interna-
tional Conference on Learning Representations, ICLR. 2020,
OpenReview.net.

[22] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh,
J. Sotelo, A. de Brébisson, Y. Bengio, and A. C. Courville,
“MelGAN: Generative adversarial networks for conditional
waveform synthesis,” in Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information
Processing Systems, NeurIPS, H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett,
Eds., 2019, pp. 14881–14892.

[23] R. Yamamoto, E. Song, and J. Kim, “Parallel WaveGAN: A
fast waveform generation model based on generative adversar-
ial networks with multi-resolution spectrogram,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP. 2020, pp. 6199–6203, IEEE.

[24] X. Wang, S. Takaki, and J. Yamagishi, “Neural source-filter
waveform models for statistical parametric speech synthesis,”
IEEE ACM Trans. Audio Speech Lang. Process., vol. 28, pp.
402–415, 2020.

[25] X. Serra and J. O. Smith, “Spectral modeling synthesis: A
sound analysis/synthesis based on a deterministic plus stochas-
tic decomposition,” Computer Music Journal, vol. 14, pp. 12–
24, 1990, SMS.

[26] I. R. Titze, Principles of Voice Production, Prentice Hall, 1994.

[27] K. Ito, “The LJ speech dataset,” https://keithito.
com/LJ-Speech-Dataset/, 2017.

[28] A. Cheveigné and H. Kawahara, “YIN, a fundamental fre-
quency estimator for speech and music,” The Journal of the
Acoustical Society of America, vol. 111, pp. 1917–30, 05 2002.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” in 3rd International Conference on Learning Rep-
resentations, ICLR, Y. Bengio and Y. LeCun, Eds., 2015.

[30] International Telecommunication Union, Method for the sub-
jective assessment of intermediate quality levels of coding sys-
tems, Geneva, 2015.

[31] M. Schoeffler, S. Bartoschek, F.-R. Stöter, M. Roess, S. West-
phal, B. Edler, and J. Herre, “webMUSHRA — a comprehen-
sive framework for web-based listening tests,” Journal of Open
Research Software, vol. 6, 02 2018.

[32] D. Griffin and J. Lim, “Signal estimation from modified short-
time fourier transform,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 32, no. 2, pp. 236–243,
April 1984.

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

	1 Introduction
	2 Related Work
	3 Methods
	3.1 Network Architecture
	3.1.1 Trainable Layers
	3.1.2 Harmonic Sinusoidal Oscillator
	3.1.3 Filtered-Noise Generator
	3.1.4 Training Objective

	3.2 Experimental Setup

	4 Results and Discussion
	4.1 Audio Clips
	4.2 Synthesis Speed
	4.3 Training Time
	4.4 Model Size
	4.5 Listening Test

	5 Conclusions and Future Work

